
THE a-fJ INVERSION IN QUARTZ 4945 

usual compliance matrix for crystals of either 
symmetry class 32 or 62. 

ApPENDIX C 

Slope of phase boundary for coherent first­
order transitions (assuming infinitesimal trans­
formation strains) under conditions of nO'nhy­
drostatic stress. Let us assume that the 
solid-solid transition is characterized by a small 
reversible transformation strain f:.{<J, so that 
infinitesimal strain theory may be used. In this 
case the volume V never differs much from the 
volume Vo in the reference state of stress and 
strain, so that the elastic work done by the 
applied stresses when the body undergoes a 
small virtual deformation d{<J is [Nye, 1957J 

dW = VoO";; dEij (Cl) 

where summation over repeated indices is under­
stood. 

We now define a thermodynamic potential 
function, which we shall prove has useful ex­
tremum properties at equilibrium under condi­
tions of constant temperature and stress 

G = U - T S - VoO";;E;; + Vo(P) (C2) 

where the mean pressure (P) = (-uu -u". 

-0"33)/3. There are, in fact, many such func­
tions that would serve our purpose, but (C2) 
has the virtue of reducing in the case of hydro­
static pressure to the conventional Gibbs free 
energy G = U - TS + PV. 

The first and second laws of thermodynamics 
and (C1) can be combined to yield 

dU ~ T dS + VoO";; dE;; (C3) 

for any small spontaneous change in the entropy 
and state of strain of the elastic body, where 
the equality holds only when the body is in 
equilibrium. Differentiating (C2) and substi­
tuting (C3), we see 

dG ~ - S dT - VoE;; dUij + Vo d(P) (C4) 

where the equality again implies equilibrium. 
Thus, at constant temperature and stress, G is 
a minimum at equilibrium, because any spon­
taneous change from a non equilibrium state 
entails a decrease in G. Similarily, the chain of 
reasoning can be reversed to show that the first 
and second laws also imply the converse: when­
ever G is a minimum at constant temperature 

and stress, the body is in elastic and thermal 
equilibrium. 

Consider now a situation where n" moles of the 
a phase are in equilibrium with nP moles of 
the (3 phase. This can occur only if G of the 
composite system is unchanged by a transfor­
mation of an infinitesimal number of moles of 
material dnP from the a to the (3 phase. That 
is, dG = g" dna + gP dnP = (gP - gO) dn' = 0, 
which requires that G per mole of a and (3 be 
equal: g" = gPo At a nearby point on the bound­
ary at equilibrium Oa + dO" = gP + dgP, which 
requires that dg" = dgP• Differentiation of (C2) 
yields 

dga = _sa dT - VoE;; a duo; + Vo d(P) 

= -l dT - VoE;/ dCT;; + Vo d(P) = dl 

(C5) 

where s" and sP are the entropies per mole of 
the a and (3 phases, Vo is the volume per mole 
in some convenient reference state (say in the 
a phase), {'/ is the strain in going from the 
reference state to the phase boundary, and {,/ 
is greater than {'/ by the strain f:.€'1 associated 
with the transition. Holding all components of 
the stress constant except u,,' and eliminating 
the common term vod(P) from both sides of 
(C5), we obtain the slope of the phase boundary 
in the Uk' - T plane 

MkI == -(aT a_~/aCTkl).", ... 

= Vo tlEkl/ tls (C6) 

Thus, the increase of transition temperature 
with stress varies for the different components 
of stress proportionally to the corresponding 
component of the transformation strain. 

Note that (C6) reduces to the standard 
Clapeyron equation 10 in the case of hydro­
static pressure (set k = l and sum, with 
duu = dO"". = dU33 = -dP). It is also closely 
analogous to the asymptotic relations derived 
for A. transitions. If the changes f:.s and f:.€kI 

are assumed to occur continuously in a very 
small interval of temperature or stress around 
the transition boundary, we see that an expres­
sion like (7) or (8) can be obtained by dividing 
both numerator and denominator of (C6) by 
either f:.T or f:.u'J, respectively. 

Since deriving equation C6 we have found it 
stated without proof and applied to the transi-
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tion in the indium-thallium alloy system by 
Burkart and Read [1953J, as well as a one­
dimensional form of it used by Flory [1956J 
to deal with a reversible transition in protein 
fibers. A brief derivation is given by Forsbergh 
[1956, p. 357J with reference to the dependence 
of the Curie point on stress in ferroelectrics 
which is valid, even though his statement that 
the generalization of the Gibbs free energy that 
he uses reduces to the standard one for hydro­
static pressure is incorrect (p. 346). 

This treatment of coherent first-order transi­
tions can be compared with other theories of 
nonhydrostatically stressed solids that have 
some features in common. Verhoogen [1951J 
presented a theory in which the chemical 
potential (G per mole) is uniform within a 
homogeneously stressed solid and the orienta­
tion of the phase boundary plays no role in 
thermodynamic equilibrium. These are two of 
the distinguishing characteristics of the above 
development, but his conclusion that it is suffi­
cient to a first approximation to replace P in 
the hydrostatic equations by (P) = {-O"ll - 0"., 

-0" .. ) / 3 in order to deal with a general stress 
is in agreement with our equations C5 and C6 
only in the special case in which the transfor­
mation strain is isotropic (no shape change: 
fl€k' = fl v / 3vo for k = l, fl€,. = 0 for k =;'= l). 

McLellan [1968J distinguished coherent and 
incoherent interfaces in his general treatment of 
phase equilibriums, but he also appears to 
have limited his consideration to isotropic trans­
formation strains. Thus our expression for 
equilibrium between coherent a and f3 single 
component phases related by an infinitesimal 
transformation strain fl€ •• , g" = g' can be 
rewritten 

. [flEi; - Oi;(flElI + flE22 + flEaa)/3] 

(C7) 

where the reference state of stress and strain 
is taken to be in the a phase right at the transi­
tion and 81J is 1 for i = j and 0 for i =;'= j, 
whereas McLellan [1968, his equation 40bJ re­
quires 

ua 
_ T,a + (P)v a 

= uP - Tl + (p)l (C8) 

In general, these two formulations of equilib­
rium are contradictory, but (C7) becomes iden­
tical to (C8) when fl€<J is isotropic. 

Kumazawa [1963J recognized the importance 
of shape as a thermodynamic parameter, and 
his discussion of the effect of stress on twinning 
in calcite (p. 185) is similar to our procedure. 
However, he does not consider coherent poly­
morphic transitions in which a discontinuity in 
entropy occurs (latent heat) and thus does not 
derive nor use the nonhydrostatic analogy of 
the Clapeyron relation (C6). 
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